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Abstract 

 
 
 

This one-year feasibility study was aimed at developing finite element modeling 
capabilities for simulating nano-scale tests. This work focused on methods to model: 1) 
the adhesion of a particle to a substrate, and 2) the delamination of a thin film from a 
substrate. Adhesion was modeled as a normal attractive force that depends on the 
distance between opposing material surfaces while delamination simulations used a 
cohesive zone model. Both of these surface interaction models had been implemented in 
a beta version of the three-dimensional, transient dynamics, PRESTO finite element code, 
and the present study verified that implementation.  Numerous illustrative calculations 
have been performed using these models, and when possible comparisons were made 
with existing solutions. These capabilities are now available in PRESTO version 1.07. 
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Introduction 
 

Nano-scale films and structured materials are of increasing interest in emerging 
technologies of importance to Sandia. For instance hard tribological coatings, with a 
thickness of 10-50 nm, are being considered for Si-MEMS and Ni-LIGA structures. One 
critical aspect of successfully deploying such materials is an assessment of their 
performance and durability. There are a number of potentially useful test methods to 
evaluate nano-scale films and particles. For example, stressed over-layers can induce 
~10-nm thick films to delaminate from a substrate, and a nanoscratch tester can push 
nano-clusters off the substrate to which they adhere.  Unfortunately, fundamental 
material parameters are not measured directly in such tests; rather detailed mechanics-
based models must be used in conjunction with the experimental data to deduce the 
desired properties. The deformation and failures generated in nano-scale tests are 
typically quite complex, and adhesion and elastic deformation often dominate material 
response  (yielding normally occurs only at very high stress-levels at the nano-scale). In 
this one-year LDRD feasibility study, methods for modeling nano-scale tests were 
investigated.  
 

Adhesion is modeled as a normal attractive force that depends on the distance 
between opposing material surfaces while delamination is simulated using a cohesive 
zone model [1]. Both of these surface interaction models had been implemented in a beta 
version of the three-dimensional, transient dynamics, PRESTO finite element code [2] 
and are now available in PRESTO version 1.07. Contact capabilities in PRESTO are 
provided by ACME (Algorithms for Contact in a Multiphysics Environment [3]), and 
cohesive zone and adhesion models were implemented via ACME. During the past year, 
the PRESTO implementation of the adhesion and cohesive zone models has been 
verified, and numerous illustrative calculations were performed using these models. In all 
of these calculations, the materials were idealized as linear elastic. Elastic deformation 
often dominates in nanostructured materials since conventional dislocation-based plastic 
deformation mechanisms are suppressed at this length scale. Presented below are the 
results of two illustrative calculations. In one calculation, the force required to pull a 25-
nm radius polysilicon cylinder off of a thick polysilicon substrate is determined as a 
function of adhesion energy. In another calculation, a 100 nm thick tungsten strip is 
pulled off of a silicon substrate. These 2-D plane strain problems were selected because 
they highlight phenomena that are important in modeling nano-scale tests while still 
being sufficiently idealized to permit a comparison with existing, closed-formed 
solutions. 
 
 

Illustrative Examples 
 
Polysilicon cylinder on a thick polysilicon substrate 
 

The 2-D, plane strain problem of a polysilicon cylinder on a thick polysilicon 
substrate was analyzed. The polysilicon is modeled as linear elastic with a Young’s 
modulus of 164 GPa, a Poisson’s ratio of 0.23, and a density of 2.9 g/cm3. The radius of 
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the cylinder is 25 nm. Figure 1 shows the two meshes used in the finite element analyses. 
At the contact point, the smallest element in the coarse mesh (1a) has a side length of 1 
nm, while the smallest element in the refined mesh (1b and 1c) has a side length of 0.1 
nm.  The cylinder is displaced with a normal velocity of 1000 mm/s to approximate a 
static loading. 

Adhesional forces between solids are normally significant over a distance of on the 
order of one nm [4]. It is computationally desirable to use a minimum element size with 
that same length scale. However, that length scale must also be sufficient to reproduce 
localized contact stress. For this reason, the Hertz line contact problem was analyzed first 
to investigate the effect of element size on calculated contact pressure in the absence of 
adhesional forces. In these calculations the upper half of the cylinder is displaced 
downward 1 nm, generating a peak contact pressure of over 5 GPa. The calculated results 
are compared with the well-known analytic Hertz solution for line contacts [5] in Fig. 2. 
For the case of a cylinder in contact with a flat substrate of the same material,  

 

 p o = P 1/ 2

2
 (1) 

 

with  p o = po

E * and P = 4P
πE *R

 (2) 

 
and where po is the maximum contact pressure, P is the applied line load per unit length, 
E is Young’s modulus, ν is Poisson’s ratio, R is the radius of the cylinder, and E* = 
E/(2(1-ν2)). Note that the analytic solution indicates that the nondimensionalized 
maximum contact pressure p ovaries as the square root of the nondimensionalized 
applied compressive force P . 
   

1a) Coarse mesh, smallest 
element side length = 1 nm. 

1b) Refined mesh, smallest 
element side length = 0.1 nm.

1c) Close-up view of the 
refined mesh at contact point. 
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 Figure 2 shows that the calculation that used the coarse mesh provides a reasonably 
accurate result even thought the maximum half contact width is only 3 nm (i.e. 3 element 
side lengths in the coarse mesh). The calculation that used the refined mesh is in very 
close agreement with the Hertz solution (the slight deviation from the Hertz solution at 
higher loads is probably a consequence of using a finite-sized substrate, Fig. 1, since at 
higher loads the calculated results display noticeable stress along the lower boundary of 
the substrate).  
 
 

Next the force required to pull the 25-nm radius polysilicon cylinder off of a thick 
polysilicon substrate was determined as a function of the adhesion energy. To permit 
comparison with an available elasticity solution, the adhesional surface stress is assumed 
to be independent of the cross-gap distance up to a critical gap distance, beyond which 
surface stress vanishes (Fig. 3, the finite element calculations added finite loading and 
unloading slopes equal to σ0/(0.05δc) for improved numerical stability). In the results 
presented below, the critical cross-gap distance, δc, is fixed at 1 nm, while the adhesive 
surface stress, σ0, is varied to generate different levels of adhesion energy. Note, that the 
area under the adhesion curve equals the adhesion energy Γo (i.e., work of separation), 
and for the Fig. 3 relation, Γo=σoδc (e.g., Γo = 0.1 J/m2 when σ0 = 100 MPa). 
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Fig. 2. Comparison of finite element (FEA) and Hertz analytic line contact solutions 
for a cylinder in contact with a flat substrate of the same material.
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Figure 4 plots the calculated compressive pull-off force for a range of adhesion 

energies. Finite element calculations were performed with both the coarse and the refined 
mesh (Fig. 1). These calculated results are compared with an analytic, elasticity-based 
solution presented in [6] (see their equation 44). The finite element results showed that 
for the adhesion energies considered here, there is negligible change in the polysilicon 
surface profiles. This suggests that the materials can be idealized as rigid, and in that case 
the pull-off load can be readily determined for the adhesion surface stress vs. gap 
distance relationship defined in Fig. 3. The length of the adhesion zone, 2b, can be 
determined immediately from geometric considerations. 

 
 b = 2Rδc  (3) 

and the pull-off force/length, P, is simply equal to the adhesive surface stress σ0 times 2b. 
 

 P = 8RΓoσ o  (4) 
 
Figure 4 shows that the elasticity-based solution and the rigid materials approximate 
solutions are in close agreement for the set of material parameters considered here. The 
calculated finite element results are within 10% of the theoretical results for a coarse 
mesh with a minimum element size of 1.0 nm, and are within 2% when the minimum 
element size was reduced to 0.1 nm. 
 

 
Appendix A contains an example of the PRESTO input for the adhesion model. As an 

aside, note that the contact capabilities within PRESTO use a box defined around each 
element face to locate nodes that may potentially contact the face. This box is defined by 
a tolerance normal to the face and another tolerance tangential to the face. In an adhesion 
calculation, the normal tolerance must be set to equal to at least δc or the adhesion-gap 
relationship will be truncated. Also note that the tangential gap must be set equal to some 
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Fig. 3. Adhesion surface stress σ versus the 
cross-gap distance δ between surfaces. 
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relatively small percent of the element side length, or the algorithm will have difficulty 
determining the correct node/surface pair. In the calculations presented above, the normal 
tolerance was set to 1.05 δc, and the tangential tolerance was set to 0.1 times the 
minimum element side length. 
 
 

Thin tungsten strip on a silicon substrate 
 

In this set of calculations, a 100 nm thick tungsten layer is pulled off of a silicon 
substrate. A 2-D, plane strain model for a delaminated strip was analyzed to permit the 
comparison of the calculated results with an approximate, analytic solution for a static 
loading. In the calculation, one half of the strip is modeled with the symmetry condition 
enforced at the centerline, Fig. 5a, and the centerline nodes are displaced upward with a 
velocity of 10,000 mm/s (trial calculations using a 1,000 mm/s loading rate computed 
delamination lengths that were within 10% of these computed with a 10,000 mm/s 
loading rate). Elements along the interface have a side length of 5 nm. The tungsten is 
modeled as linear elastic with a Young’s modulus of 410 GPa, a Poisson’s ratio of 0.28, 
and a density of 19.3 g/cm3 (the silicon properties are listed in the previous section). 
These calculations employed a cohesive zone (CZ) model similar to that originally 
formulated by Tvergaard and Hutchinson [1]. In this CZ model, the traction-separation 
relation is based on a potential function that depends on a scalar, effective separation. 
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Fig. 4. Comparison of finite element (FEA) and analytic solutions for pull-off load as a 
function of adhesion energy. 
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Figure 5b shows the form of the effective traction vs. effective separation relation used in 
this study. The critical effective separation, defined so that the tractions drop to zero at 
λ=1, is fixed at 1-nm while the maximum interfacial stress ˆ σ  is varied to generate 
different levels for the work of separation, Go. Appendix B describes the model in detail 

and also contains an example of the PRESTO input for the CZ model (δn
c

= δt
c

= 1nm in 
the calculations reported here).  
 
 

 

  
 Figure 6 plots the calculated nondimensionalized delamination half-length, b, as a 
function of the nondimensionalized center deflection, g, for various values of a parameter 
that depends on the work of separation Go. The calculated cohesive zone length is greater 
than 100 nm, which is large compared to the element size. These results are compared 
with an approximate analytic solution (for a static loading) that is derived using beam 
theory. One end of the beam is cantilevered a distance g above the substrate while the 
beam’s other end has a zero slope at the tip of the delamination (Fig. 5a). The energy 
release rate per unit thickness, G, which equals to Go for a propagating delamination, is 
determined using the well-known fracture mechanics relationship between G and the 
change in the systems potential energy with crack length (delamination half-length, b) 
[7]. The desired relationship is 
 

 b / h = (3 / 2)
1/4 E h

Go

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
1/4

g

h

⎛ 
⎝ 
⎜ 
⎞ 
⎠ 
⎟ 
1/2

 (5) 

 
where E = E /(1−ν2). Figure 6 shows that there is good agreement between the 
approximate, static solution and the finite element calculations. 
 
 

Fig. 5b. Effective traction vs. 
effective separation relation 
used in CZ model. 
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Suggestions for Future Work 

 
This one-year feasibility study has demonstrated the accuracy and usefulness of 

PRESTO’s adhesion and cohesive zone models, and these capabilities are now available 
in PRESTO version 1.07. The present implementation could be made more robust by 
taking into account of the possibility that the adhesion and CZ models can in some 
circumstances control the solution’s stable time step. The minimum time step used for the 
explicit time integration of the governing equations depends on the highest eigenvalue 
(vibrational mode) in the mesh. The presence of adhesion or cohesion models in the 
analysis can introduce or modify high frequency vibrational modes. The initial stiffness 
of the adhesion surface stress-gap distance relation (Fig. 3) and the traction-separation 
relation (Fig. 5b) determine a vibrational frequency for the connected nodes. Formulae 
can be derived to estimate the frequency of those vibrational modes that might impact the 
choice of the stable time increment. These estimates can often be based on simple 
idealizations that capture the main features of the mode of interest [8]. 
 

In other work, not reported above, a preliminary attempt was made to model the 
buckle-driven delamination of a biaxially stressed film from a substrate. Large, dynamic, 
transverse deflections are generated as the thin film abruptly buckles from the substrate. 
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Since all the materials were modeled as linear elastic in this analysis, there is no energy 
dissipation, and the delamination oscillates indefinitely. If one is interested in the quasi-
static solution, then some form of dampening must be added. If one is interested in 
modeling transient response at the nano-scale, an accurate calculation must include any 
energy dissipation mechanisms that might exist. These mechanisms, however, are not 
well understood, and methods to measure nano-scale damping are a challenge. 
 

The adhesion and cohesive zone models implemented in PRESTO are basic surface 
interaction models. It is likely that other surface interaction models could be formulated 
to give a better representation for certain situations. An initial effort was made to develop 
a surface interaction model that combines a novel nm-scale friction model with the 
adhesion model. This “junction” model was motivated by recent atomic force microscope 
data that suggests that the magnitude of nm-scale friction depends on the bimaterial pair’s 
adhesion energy, but is independent of the contact stress [9]. This is undoubtedly a 
fruitful topic for further study. 
 
Acknowledgements. The adhesion and cohesive zone models where implemented in 
PRESTO by Reese Jones (SNL/CA) and Nathan Crane (SNL/NM). This work was 
performed at Sandia National Laboratories. Sandia is a multiprogram laboratory operated 
by Sandia Corporation, a Lockheed Martin Company, for the U. S. Department of Energy 
under contract DE-AC04-94AL85000. 
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 Appendix A
 
Example of PRESTO input commands used with Adhesion Model 
 
 
  begin definition for function ADvsU 
     type = piecewise linear 
     ordinate = traction 
     abscissa = separation 
     begin values 
       0.00000000        0.00 
       0.00000005        1.00 
       0.00000100        1.00 
       0.00000105        0.00 
     end values 
   end definition for function ADvsU 
 
     ### contact definition ### 
     begin contact definition contact 
 
       contact surface surface1 contains surface_2 
       contact surface surface2 contains surface_11 
 
        begin adhesion model adh 
          adhesion function = ADvsU 
          adhesion scale factor =100.0 
        end adhesion model adh 
 
       begin interaction inter_1 
         surfaces = surface1 surface2 
         automatic kinematic partition 
         normal tolerance = 1.1e-6 
         tangential tolerance = 0.1e-6 
         friction model = adh 
       end interaction inter_1 
     end contact definition contact 
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Appendix B 
 
 

The cohesive zone model implemented in PRESTO is the same as that used by 

Tvergaard and Hutchinson (they call their model the Embedded Process Zone (EPZ) 

model [1]). They define a cohesive potential that depends on a scalar, effective 

separation. The effective separation λ is expressed in terms of the normal (δn ) and 

tangential (δt ) components of the displacement difference of initially coincident points 

on the interface that separate as the interface fails, with 

 λ =
δn

δn
c

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

+
δt

δt
c

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

2

 (A1) 

The parameters δn
c and δ t

c  are critical values of these displacement components and are 

defined so that when λ=1, the tractions drop to zero. The function σ(λ) is the effective 

traction vs. separation relationship and is used to define a traction potential 

 

 φ(δ n,δt ) = δn
c σ ( ′ λ )

0

λ

∫ d ′ λ  (A2) 

Consequently, the normal and tangential traction components that act across the 

interfacial cohesive zone are   

 Tn =
∂φ
∂δn

=
σ (λ)

λ
δn

δ n
c and Tt =

∂φ
∂δt

=
σ (λ)

λ
δn

c

δt
c

δt

δt
c  (A3) 

 The relative contribution of shear and normal displacement (i.e., for a mixed-mode 

loading) is determined by specifying the value of the ratioδn
c δt

c
. Under a pure normal 

separation (δ t = 0 ), Tn =σ(λ) with λ = δn δn
c and with a peak normal traction of ˆ σ  (Fig. 

5b). Under a pure tangential displacement (δn = 0 ),Tt = (δn
c δt

c )σ (λ) with λ = δt δ t
c  and 

with a peak tangential traction of (δn
c δt

c ) ˆ σ . The work of separation per unit area of 

interface is path independent and equals the value of the potential φ (eq A2) evaluated at 

λ = 1. Note that the formulation allows reversible behavior prior to attaining λ = 1. Also 

note that the PRESTO implementation constrains interfacial normal separation to prevent 

interpenetration when λ<1.  
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Example of PRESTO input commands used with Cohesive Zone Model 

 
 
  begin definition for function TvsU 
     type = piecewise linear 
     ordinate = traction 
     abscissa = separation 
     begin values 
        0.0   0.00 
        0.2   1.00 
        1.0   0.00 
     end values 
   end definition for function TvsU 
 
 
 
     ### contact definition ### 
     begin contact definition contact 
 
       contact surface surface1 contains surface_2 
       contact surface surface2 contains surface_13 
 
       begin cohesive zone model czm 
          critical normal gap = 0.000001 
          critical tangential gap = 0.000001 
          traction displacement function = TvsU 
          traction displacement scale factor = 200 
       end cohesive zone model czm 
 
 
       begin interaction inter_1 
         surfaces = surface1 surface2 
         automatic kinematic partition 
         normal tolerance = 1.0e-6 
         tangential tolerance = 1.0e-6 
         friction model = czm 
       end interaction inter_1 
 
     end contact definition contact 
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